
 SCHOOL OF COMPUTER, DATA & MATHEMATICAL SCIENCES
 COMP2016: Programming Techniques (Advanced)

Spring 2022: Programming Project

Due by 7:00pm on Friday 21st October 2022 Assessment Weight: 40%

A. Requirements

a) ALL instructions given in this document MUST be followed to be eligible for full marks for the project. This
document has six (6) pages.

b) This project is NOT a group project; collusion, plagiarism, cheating of any kind is not acceptable. As part of your
submission, you MUST certify that all work submitted is your own. If you cannot honestly certify that the work is
your own, then do not submit the project. Breaches of the Misconduct Rule will be dealt with according to the
university Rule (see the learning guide for more information).

c) All project submissions will be checked for academic misconduct by the use of the MOSS program from Stanford
University.

d) Aspects of the project for COMP2016 that are different to COMP2015 are identified in this document in blue text.
These aspects are to be implemented by students enrolled in COMP2016 only.

For the problem definition described in section B you must
e) include your student id at the end of all filenames for all java code files. Two classes have been identified in

section B as being required as part of your solution. Do not modify the names of these classes except for adding
your student id to the end of the filename. Other Java files will be needed as part of your solution. All Java code
files that are used in this project MUST have your student id appended to the filename. For example,
Driver_########.java;

f) include your authorship details at the top of each file in code comments (see item 3.1 in Section C of this document
for details);

g) adhere to the coding standard as identified in the Google Java Style Guide (see Section C of this document for
details);

h) ensure that standard console Input/Output are used in all code segments, do not use Swing;
i) ensure that your java code is appropriately modularised for the given problem definition. That is, you need to write

appropriate classes and methods to solve the problem;
j) reference all sources that you used for inspiration of your solution as per Section D of this document;
k) Ensure that your java code compiles and runs in Eclipse installed in the SCDMS labs.

B. Project Details

B(i) - Background information and description
By definition, a shareholder owns one or more shares of stock in a public or private corporation. A shareholder may own
shares in one or multiple corporations, this is known as a portfolio. Shares of stock for a corporation are traded (bought
and sold) on the stock market where the price of the shares fluctuates due to various influences including supply and
demand. A shareholder may engage the services of an agent, commonly known as a broker or stockbroker, to trade shares
on their behalf. The stockbroker maintains records of their customers, their portfolios, shares traded, and charges the
shareholder a fee for each of the trades they transact on their behalf.

A Sydney stockbroker, Ms Dee Zaster, wants you to create an object-oriented Java program that can be used to maintain
records of her customers, their portfolios, shares traded, and to generate portfolio reports.

The specific functional requirements of the Java program required by Dee Zaster are described in section B(ii) of this
document. The customer, portfolio and share records are stored in secondary storage in text files. These text files are
described in section B(iii) of this document. The Java classes that must be implemented in your Java program are
described in section B(iv) of this document, however, other classes may also be needed to solve the program requirements.

B(ii) - Program Requirements/Functionality
The Java program must be menu driven. When the program loads it must first display the following main menu which is
used to control program execution:

1. Load Files
2. Update
3. Trade Shares

Page 2 of 6

4. Portfolio Report
5. Save Files
6. Exit Program

Each menu item performs a specific set of tasks and/or displays a sub-menu of options that can be chosen by the user.

Main Menu Item Functionality
The required functionality for each menu item is described as follows:

1. Load Files – when this menu option is selected the following actions should be performed by the program:

• read the data from the shareholder.txt file into either an array or arraylist of Shareholder objects.
• read the data from the portfolios.txt file into either an array or arraylist of Portfolio objects.
• read the data from the shares.txt file into either an array or arraylist of Share objects.

If any of the above files do not exist when attempting to read them the user should be informed of this and given the
opportunity to provide an alternate filename that contains the relevant data. This alternate file should then be read
into the appropriate array or arraylist.

After successfully reading the three files into memory program control should return to the main menu.

See section B(iii) for a description of each text file and section B(iv) for a description of each class.

2. Update – when this menu option is selected a sub-menu is to be displayed that controls which data values can be
changed by the user. The sub-menu items are:

1. Update Share Price
2. Update Customer Phone
3. Return to main menu

The sub-menu items perform the following tasks:
1. Update Share Price – Find the share stock for which the price needs to be changed by searching for the share
code within the array or arraylist of Share objects. Once found, enter the new share price and update the share price
in the array or arraylist. Share prices must be positive numeric values.
2. Update Customer Phone – Find the customer whose phone number needs changing by searching for the surname
and first name within the array or arraylist of shareholder objects. Once found, enter the new phone number and
update the phone number in the array or arraylist. Phone numbers must be a 10-digit number starting with 04. Phone
numbers are not mandatory.
3. Return to main menu - Return program control to the main menu (do not exit the program)

3. Trade Shares - when this menu option is selected the following menu should be displayed:

1. Trades by Keyboard
2. Trades by File

When Trades by Keyboard is chosen, the following actions should be performed by the program:
• Find the customer for whom shares are to be traded by searching for the surname and first name within the array

or arraylist of shareholder objects.
• Identify which share stock they wish to trade by searching for the share code within the array or arraylist of Share

objects. If the customer already owns shares in the chosen corporation, then shares may be either bought or
sold. However, if they wish to trade in shares they don’t own then shares may only be bought.

• determine if the shares are to be bought or sold for the customer, and how many shares
• transact the trade (ensure your program takes into account all logical validation conditions when doing so).
• generate an on-screen summary of the trade. The summary of the trade must show the customer name and

address, portfolio ID, current date, share code, company name, number of shares bought or sold, share price,
total of the trade. Make sure that this is displayed in a clear and logical format on the screen.

When Trades by File is chosen, the program will need to read the data from the Trades.txt file and transact the
trades that are identified for each of the portfolios therein. After all of the trades from the file have been transacted
the program must generate a report to screen and external file (TradeReport.txt) which shows the details of each
successful trade for each customer. The report must show trades grouped by customer as in the following example
report:

CUSTOMER TRADE REPORT
Firstname Surname

Page 3 of 6

Address
Portfolio ID, Report Date

Share Code Shares Held Shares Sold Shares Bought Shares Held
BHP 11000 - 1000 12000
SUN 0 - 1000 1000
SUN 1000 - 1000 2000
SUN 2000 1900 - 100

In the situation where a trade would fail, do not generate the above report but rather write an error statement to the
FailedTrades.txt file. The error statement must contain Portfolio ID, Date, Share Code, Number of Shares that failed,
reason for failure, on one line. For example, a line in the FailedTrades.txt file may look like

pf3700,17/09/2017,BEN,-3000,Insufficient shares to sell

4. Portfolio Report - when this menu option is selected the following actions should be performed:
• Determine if the report is for all customers or for a specific customer
• generate the Portfolio Report for either all customers or the specified customer. The Portfolio Report should have

a similar layout to the following example:

PORTFOLIO REPORT for Firstname Surname
Address
Portfolio #, Report Date

Share Code Company Name Number of Shares Share Price ($) Shares Total ($)
BHP BHP Billiton 12000 10.50 126000.00
SUN Suncorp Group 100 12.00 1200.00
XXX XXXXXX XXXXX XXX.XX XXXXXXX.XX
TOTAL YYYYY YYYYYYY.YY

5. Save Files – when this menu option is selected the program must write the portfolios data to the Portfolios text file, the
customer data to the shareholders text file, and the share data to the shares text file. Ensure that when writing to each file
you use the same output format as indicated in section B(iii) so that the files can be used as input files by the program on
next execution.

6. Exit Program – the program must terminate when this menu item is selected. The program should not terminate until
this option is chosen. If the portfolio, share, or customer data has changed since the last save operation then do not exit
the program. Instead, warn the user that changes have been made to the file(s) and that they should choose the Save
Files option, then return program control to the main menu.

B(iii) - Text files to be processed
The data that is to be manipulated by your Java program for this project is contained in the text files shareholders.txt,
portfolios.txt, and shares.txt. Examples of these text files are found in the zip file for the project. As explained in
Load Files of section B(ii) the data within these text files will need to be read into memory by your program so that it may
be manipulated to solve many aspects of the required functionality of the project. The text files have been created to
conform to a particular format. The format for each file is described below:

File: shareholders.txt
This file contains a full record of all Dee Zaster customers (shareholders). Each line within the file represents an individual
customer, and has the following format:

Customer ID,Customer Name,Customer Address,Customer Phone,Portfolio ID

where each data item is separated by a comma (,). A brief explanation of each of these data items:

Customer ID: a unique numeric identifier for a customer
Customer Name: the customer name in the format: firstname surname
Customer Address: the customer address
Customer Phone: the customer mobile number
Portfolio ID: a unique identifier for the customer share portfolio

Two (2) shareholders.txt file has been provided in the project zip file.

Page 4 of 6

File: portfolios.txt
This file contains a full record of all portfolios for each customer. Each line within this file represents an individual portfolio
of shares for a shareholder, and has the following format:

Portfolio ID,[Sharecode,Number of shares]{n}

where each data item is separated by a comma (,). Note: A portfolio can have many different share stocks hence the Share
Code and Number of shares may be repeated up to 'n' times. A brief explanation of each of these data items:

Portfolio ID: a unique identifier for the customer share portfolio
Sharecode: code used to identify the share stock
Number of Shares: the number of shares for the share held

Two (2) portfolios.txt file has been provided in the project zip file.

File: shares.txt
This file contains a full record of all shares that can be traded by the stockbroker. Each line within the file represents a
share stock, and has the following format:

Sharecode,Company Name,price

where each data item is separated by a comma (,). A brief explanation of each of these data items:

Sharecode: code used to identify the share stock
Company Name: the name of the company of the share code
price: the closing price of the share stock

One (1) shares.txt file has been provided in the project zip file.

File: trades.txt
This file contains a full record of all trades that are to be transacted on portfolios for customers. Each line within this file
represents an individual trade of shares for a shareholder, and has the following format:

Portfolio ID,Sharecode,Number of shares

where each data item is separated by a comma (,). A brief explanation of each of these data items:

Portfolio ID: a unique identifier for the customer share portfolio
Sharecode: code used to identify the share stock
Number of Shares: the number of shares for the share to be traded. Note: the value will be positive
when the shares are to be bought, and will be negative when the shares are to be sold.

One (1) trades.txt file has been provided in the project zip file.

Note: for the purpose of marking the project the number of lines of data and the data values in the text files will be
replaced with different data by the marker. This is to ensure that your solution has not relied upon specific data values or
the number of lines in the text files to work. You should therefore test your program with different data files before
submission.

B(iv) - Required Classes
To write your solution for this project it is a requirement that you write appropriate code for at least the following java
Classes:

• Shareholder
• Portfolio
• Share

These classes are described in general terms as follows:

• Shareholder class: The Shareholder class represents an individual shareholder (customer). The Shareholder
class needs data fields for the Customer ID, first name, surname, address, customer phone, portfolio id.
Implement appropriate constructors, accessors, and mutators where necessary and other appropriate methods
for this class based upon the general requirements of the project specification – that is, you will need to identify
if the shareholder class is required to perform any other actions and implement the identified methods in the
class.

Page 5 of 6

• Portfolio class: The Portfolio class represents a collection of one or more shares that an individual
shareholder owns. The Portfolio class needs data fields for the Portfolio ID, Share Code, the number of shares.
Implement appropriate constructors, accessors, and mutators where necessary and other appropriate methods
for this class based upon the general requirements of the project specification – that is, you will need to identify
if the portfolio class is required to perform any other actions and implement the identified methods in the class.
Note: A portfolio can have up to ‘n’ different share stocks, hence the Share Code and number of shares may
need to be stored up to ‘n’ times.

• Share class: The Share class represents an individual share stock that is traded on the stock market by the
broker. The Share class needs data fields for the Share Code, the Company name, the Share price. Implement
appropriate constructors, accessors, and mutators where necessary and other appropriate methods for this
class based upon the general requirements of the project specification – that is, you will need to identify if the
share class is required to perform any other actions and implement the identified methods in the class.

These classes must be incorporated into your solution. It is likely that you may also need to write other classes depending
upon your solution method.

COMP2016 Programming Techniques (Advanced) additional classes:
• Determine if Trades is a separate class or if they are a specialised extension of one of the classes identified above.

Implement the most appropriate solution for Trades. Also, there may be opportunities for class aggregation; if so,
implement the identified aggregation(s).

• Implement appropriate utility classes to reduce the amount of duplicate code and to increase the level of code
reusability.

C. Google Java Style Guide

The submission in this project must adhere to the following listed coding standards as defined in the Google Java Style
Guide that is found at https://google.github.io/styleguide/javaguide.html

Style Guide
Item Number

Changes to Modification

2.1 to 2.3 2.1 modified 2.1 - File Name: The source file name consists of the case-sensitive
name of the top-level class it contains as identified in the question, plus
an underscore, plus the student ID, plus the .java extension
Example: Share_12345678.java

3.1 to 3.4.1 3.1 modified 3.1 – License Info is replaced by Authorship information
All java source files must contain the authorship information as follows:
Student ID:
Name:
Campus:
Tutor Name:
Class Day:
Class Time:

4.1 to 4.7,
4.8.2.1 to 4.8.2.3,
4.8.4 to 4.8.4.3,
4.8.6

NIL

5, 5.1 to 5.3 NIL

D. Referencing

Referencing must follow the guidelines given in Section 2.5.1 of the unit Learning Guide. An example implementation of
this referencing style can be found in the FAQ in the Programming Techniques vUWS site.

E. Project Submission Procedure
To submit your project you must do the following by the due date and time specified on page 1 of this document:

1. Create a zip file which contains
a. your complete Java project including the Java source code file(s).

Note: The zip file must be named according to the naming convention

Page 6 of 6

studentid_StudentName_COMP2015_Project.zip

where studentid is your student id, and StudentName is your full name,

2. Upload the above zip file in vUWS in the Project Submission link provided.

F. Marking Criteria and Standards

The marking criteria and standards for the project are published in section 2.5.2 in the Learning Guide and will be used
to assess your project submission according to the specific weightings identified in the table below

Code
Functionality/Correctness:

55% Code Documentation: 5%

Class Construction 20% Identifier Use:

5%

Algorithm Selection: 10% Code Readability: 5%

